
AD-A12i 940 THE AFGL IMAGE RECONSTRUCTION PROGRAM 11 SPECKLEii
INTERFEROMETRYI) AIR FORCE GEOPHYSICS LAB HRNSCOM RFB
MA S P WORDEN ET AL. 8i DEC Si AFGL-TR-82-034i

UNCLASSIFIED F/G 20/6, N

mhhhhINDmhi

Ehhmhhhhh



fl urn
1

jU LI01 2' =0,. 4

MICROCOPY RESOLUTION TEST CHART
W&1104M. SUOEAU OF AfWARO-IS- A



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Mhen Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUM BER A. GOVT Ac ES3 |C . . RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

The AFGL Image Reconstruction Program II REPRINT
Speckle Interferometry

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(a)
Simon P. Worden, Capt, USAF N. J. Woolf*

E.K. Hege* P. A. Strittmatter*
E.N. Hubbard*

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Air Force Geophysics Laboratory (PHS) AREA & WORK UNIT NUMBERS

Hanscom AFB
Massachusetts 01731 2311G317

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Geophysics Laboratory (PHG) 18 November 1982
-. , Hanscom AFB 13. NUMBER OF PAGES

Massachusetts 01731 62
14. MONITORING AGENCY NAME A ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of tle report)

Unclassified

1Sa. DECLASSIFICATION/DOWNGRASING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

ELECTE

17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, it different from Repor)

B

10 SUPPLEMENTARY NOTES *Steward Observatory, The University of Arizona

Reprinted from AFSC Space Division (SD-TR-82-45), 1 December 1981, Final
*: Report, pp 1-59

19. KEY WORDS (Continue on rtveroo aide If necessary and Identify by block number)

* Satellite imagery
Speckle interferometry

20. ABSTRACT (Continue on reveres side If neceesary and identify by block number-J _ e1%C'fL WOLC .IUU ;xaLes LnpL

large-telescope, optics-limited images are recoverable for objects as faint as
415 stellar magnitudes using a technique called speckle interferometry. This
report presents a reliew of speckle interferometry, including current status and
esults. Section N provides a background of the3Fourier mathematics used in
mage processing and optical systems. Section Mi describes how the atmosphere

LAJ egrades astronomical images and how speckl interferometry has been used to
ecover high-resolution detail. Section W describes new work to recover actual

[ptics-limited images, and compares active optics systems with speckle interfero try

DD I 1473 Unclassified

R CLASSIFICATION OF THIS PAGE (When Date Entered)

As



9 AFGL-TR -82-,0341 0
REPORT 8D-TF.6 2.4

The AFGL Image Reconstruction Program II
Speckle Interferometry

SIMON P. WORDEN, Capt., USAF
Air Force Geophysics Laboratory

and
Department of Astronomy. University of California, Los Angles

E. K. HEBGE, E. N. HUBBARD, N. J. WOOLF
and P. A. STRITIMATTER

Steward Observatory, The University of Arizona

I December 1981

Final Report

!

APPROVED FOR PUBUC RELEASE;
DISTRIBUTION UNLIMITED

SPACE DIVISION
AIR FORCE SYSTEMS COMMAND

Los Angeles Air Force Station
P.O. Box 92960, Worldway Postal Center

Los Angeles, Calif. 90009



This repcrt has been reviewed by the Public Affairs Office (PAS) and is

releasable to the National Technical Information Service (NTIS). At NTIS, it

will be available to the general public, including foreign nationals.

*; This technical report has been reviewed and is approved for publication.

Publication of this report does not constitute Air Force approval of the

report's findings or conclusions. It is published only for the exchange and

stimulation of ideas.

FOR THE COMMANDER

"Thomas W. Flattery, C&4 USAF
Program Manager
Defense Dissemination Program

Accession For J_

I TTIC TS 5
U, .,_mm. T ed r-
,e d

J,,.:.,t i< le t Ion

Di istribution/
Availability Codes

I !Avail and/or

Dist Special



CONTENTS

'". INTRODUCTION .o . *. ... .. o * . o o. .*o............. . .. . .. . .. . . ......... 1

II. MATHEMATICAL BACKGROUND. ... ............ . ......... . ............ .... 7

A. Fourier Mathematics ..... ............. ...... 0.. ....... ...

B. The Fourier Transform: A Way of
Representing Data................ ................ ..... 7

C. Sampling Theorem ..o.....0...... ....................... 11

Do Noise and Filtering. ..... . ..... .......... ... .. ........ 12

III. OPTICAL SYSTEMS, IMAGE DEGRADATION, AND
SPECKLE INTERFEROMETRY ........... ........ .. ....... .. oooo.. 17

A. The Modulation Transfer Function...... oo.. .. o...o ...... 17

B. The Effects of the Atmosphere. o. .......................... 22

C. Speckle Interferometry. ....... ... . ...... ................... 23
Do Isoplanicity o .... ..... . ... .. . ....................... 27

s. Instrumentation for Speckle Interferometry ................. 21

F. Data Reduction........... 000.... . 00.... . .. **..... 32

IV. IMAGE RECONSTRUCTION... ........... .... ... .. ... .. .... .. o... .s. 39

A. Post-Processing Methods .. ................... .... ........... 39

B. Wavefront Reconstruction Methods ........ 0................. . 48

V.• S ule yo... . ... .. .. .... . .. o..o.. .. .... .. ... s........ 55SREFERENCESo.. s .... ... .. . .. ... .. . . ....... ....... . .... 57

F
E1



FIGURES

1. Speckle Images (3 arc-second area) Taken on the Kitt Peak
4-Meter Reflecting Telescope.......... .......... e........... 4

i 2. Auto-correlation of a Function f(x ) ................................ 10

3. Elimination of Noise in Power Spectra .............................. 13

4. Diagram of Light Formation from a Small Element ds of
An Aperture ...................... ................................. 18

5. Light Formation in an Optical Aperture .............................. 21

6. Calculated Modulation Transfer Functions for
Three Cases ....... .................. ........ .... . ............ 24

7. Schematic Representations of Image Formation ........................ 25

8. Representation of Isoplanatic Angle................................. 28

9. Schematic Diagram of the Kitt Peak Photographic
Speckle Camera Used by Lynds etal. (1976) .......................... 29

10. Laser Reduction of Speckle Photographs. , ........ ....... ....... 33

11. Optically (Laser) Produced Power Spectra of 35
Two Biiary Star Speckle Patterns ................................

12. Auto-correlation of a Binary Star Showing the Two
Bright Maxima at Binary Separation.................................. 36

13. Reconstructed Images and One-Dimensional Profiles for
Alpha Orionis (Resolved Supergiant) and Gamma Orionis
(Point Source) from Lynda et al (1975)............................ 41

14. Solar Image with Portion Reconstructed Using the
Knox-Thompson Algorithm..... ..... ... .... .................. ....... 44

15. Successful Reconstruction of a Binary Star (Alpha Auriga)

and a Resolved Supergiant (Alpha Orionis) Using Phase
Unwrapping Technique and Fienup Algorithm ........................... 45

16. Two Types of Active Optical Systems.... ...... .............. . 49

17. Results of ITEK Rubber Mirror Test on Point
Source Stare ........................................................ .51

18. Operation of Hartman Active Opticsyste........................... 53

2



I. INTRODUCTION

In this document, we provide a tutorial and status report on methods for

recovering Image information degraded by turbulence in the Earth's atmosphere.

This turbulence reduces angular resolution to about one arc-second, although

theoretical limits of large optical telescopes are set by the telescope pri-

mary optics diameter. For typical circular apertures, this limit is given by

the well-known Dawes' criterion:

AO - 2.1 x 105  arc second ()
d(cm)

where A is the optical light wavelength and D the telescope diameter in centi-

meters. This formula predicts about 0.02 arc second resolution for large

telescopes like the Hale 5-meter, a factor of 50 better than the atmospheric
"seeing" limit. Although Nichelson (1921) first succeeded in using a form of

interferometry to reach the theoretical resolution limit for observations of

astronomical objects, it was not until Labeyrie's (1970) hallmark work that

real progress was made.

Labeyrie (1970) pointed out that a short exposure photograph of a star

image contains identifiable and extractable Information on angular scales

approaching the Dawes limit given in Eq. (1). An example of short exposure

star photos, at very large image scale, is given in Figure 1. The overall

size of these images is about 2 arc-seconds. However,the small-scale struc-

ture within each image has a scale very close to the theoretical telescope

diffraction limit. The character of this small-scale structure is noticeably

different for the three stars; a point source, resolved supergiant star, and a

close binary. These Images are basically multiple-aperture interference pat-

terns. The process of extracting high resolution results from these inter-

ference pattern Images is therefore called "speckle interferometry."

The basic objective of speckle interferometry is to obtain the images on

time scales short enough, typically 10 m, so as to effectively freeze the

turbulence in the Earth's atmosphere. It is these turbulence cells which,
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through small temperature differences and corresponding index of refraction

changes, break up the phase coherence of an incoming plane wave. A conven-

tional long exposure photograph averages signals with rapidly varying wave-

front errors. The resulting image has a resolution set by the average scale

of coherence in the atmospherically broken up wavefront rather than the full

telescope aperture. This scale is typically 10 cm, so that long-exposure

photos have resolutions appropriate to only a 10-centimeter telescope, namely

one arc-second. However, in speckle photos, the turbulence is frozen and the

ensemble of small 10 cm coherence phase errors acts as a form of multiple

aperture interferometer to yield information on the full diffraction-limited

scale of the entire telescope. Speckle data was first reduced (Gezari et al.,

1972) by optically computing the average power spectrum (Fourier amplitude) of

many speckle photos. As will be discussed later in this paper, such results

yield telescope diffraction-limited size and shape information.

For more detailed information, Interested readers are directed to review

articles by Dainty (1976), Worden (1977), and Labeyrie (1978). However,

classical power spectrum analysis (Labeyrie 1978) does not provide sufficient

Information to reconstruct a full diffraction-limited image. Since 1970, an

improved understanding of atmospherically induced image degradation has been

reached and is described in these review papers. Two approaches, active

optics and passive reconstruction, based on extensions to speckle ,inter-

ferometry, have particular promise for complete image reconstruction. Active

optics, spearheaded by the ITEK Corporation, provide real-time image compensa-

tion and reconstruction. Active optics methods will not be extensively dis-

cussed in this report. We will concentrate on passive, after-the-fact image

reconstruction techniques, and in particular on speckle interferometry.

Since Labeyrie's introduction, speckle interferometry has been used to

measure the angular sizes of bright stars (cf Gezari et al., 1973) and to

determine the orbits of binary stars (cf McAlister, 1978). From the latter,

astrophysically important masses for the binary components may be extracted.

Until recently, the speckle technique has suffered from two key problems which

limited its usefulness to bright objects. Photographic recording systems have

limited speckle work to objects brighter than stellar magnitude +7, and the

5



data reduction techniques developed by Labeyrie and his collaborators provide

only diffraction-limited Fourier amplitude information on an object being

observed. Although the object size and general shape are derivable from the

Fourier amplitudes alone as mentioned above, the much more interesting

* diffraction-limited Image requires the Fourier phases as well. These problems

have been effectively addressed through support from the Air Force Geophysics

Laboratory (AFGL) and Air Force Office of Scientific Research (AFOSR). We

* believe it is now possible to reconstruct actual images for objects as faint

* as stellar magnitude +15, encompassing many interesting astronomical targets

as well as high-altitude, Earth-orbital satellites. In this report we provide

a brief review of the relevant Fourier mathematics (Section II) followed by a

discussion of current speckle interferometry techniques and hardware (Section

III), with special attention to the newly developed University of Arizona

speckle system. We conclude with a discussion in Section IV of currently

* available methods for recovering a complete diffraction-limited image, rather

* than merely size and shape.

6



11. MATHEMATICAL BACKGROUND

A. FOURIER MATHEMATICS

In this section we review the Fourier transform with special attention

given to the auto- and cross-correlation functions. We provide a brief de-

scription of methods used in digital (computer) Fourier analysis. We then

discuss how to properly sample data so as to preserve all available informa-

* • tion and to understand the role of noise in real data. Finally, we review the

image formation process in a typical optical system. Interested readers are

referred to Bracewell's (1965,1978) book The Fourier Transform and Its

Applications, for an extensive review of the necessary mathematical back-

ground. It is the primary reference for all that follows in Sections IIB and

IIC.

B. THE FOURIER TRANSFORM: A WAY OF REPRESENTING DATA

Data may be represented as a set of "intensities", f(x), where f(x) is

usually real and a function of a spatial coordinate "x". For physical data,

f(x) is real and usually known only at a set of discrete locations, the mea-

surement points. The consequences of this sampling are discussed in C

below. There are a number of useful alternate representations of data.

Fourier analysis is a way to decompose the intensity as a function of x into a

series of sine and cosine curves.

a o

f(x) Y--0+ E(a cos sx + b sin sx) (2)

This function is the Fourier series representation of data. The series repre-

sentation is a periodic function which repeats itself outside some range of

x. This representation is general and applies to complex functions as well as

to real functions.

The exponential representation of sines and cosines is useful for ease in

computation and notation. Following the definition

7



,1

e - cos x + i sin x (3)

the substitution

ix -ixe + e

iX -iX

sin x-e 
e

21 (4)

eliminates the sine and cosine in the Fourier series Eq. (2) yielding

a a - ib a + ib
0 x) + s s isx x s iSX

f (x) +Z( 2  e + 2 x

isx (5)

where ca is in general complex, even for real data, except for functions

symmetric around zero. For integrable functions continuous on x, the

coefficients in Eq. (5) are given by

c8 " D f(x) ei5X dx - F(s) (6)

which is the Fourier transform of f(x), usually denoted by F(s). For ease in

showing the behavior of the complex F(s), the square of the modulus of F(s),

more generally known as the "power spectrum" of f(x),

2 1 2 2
IF(s)l - /Rea1 [F(s)] + Im [F(s)) (7)

is computed. Physical measurements involve the "convolution" of the desired

quantity f(x) with the instrumental measurement profile g(x). The convolution

is defined as

o(x) f f(x') g(x- x')dx' (8)



For ease in notation, convolutions are usually denoted by an asterisk

o(x) - f(x) * g(x) (9)

This function has the interesting property that under the Fourier transform

convolutions become multiplications

0(s) -F(s) *G(s) (10)

If the instrumental response function g(x) is known, and o(x) is observed,

then the Fourier transforms G(s) and O(s) can be computed. The desired

function f(x) can then be recovered by dividing 0(s) by G(s) and inverting the

transform.

The "auto-correlation" is another useful function, which we will refer to

as A/C(x). The auto-correlation is constructed by convolving a function with

itself, as opposed to the "self-convolution" in which the function is

convolved with its reverse. The auto-correlation process is shown

schematically in Figure 2.

A/C(x) -J f(C) * f(x - x)dx' (11)

This is a function useful for revealing mean scales and periods in a data

set. A useful aspect of auto-correlations is stated in the auto-correlation

theorem: "The auto-correlation is the Fourier transform of the power

spectrum."

- 2 -iWexA/C(x) n IF(s) 2 e-  ds (12)

Another useful aspect of Fourier analysis is that the zero frequency or

DC component of the Fourier transform F(0) is always real and represents the

area (or average) under the curve f(x) for the limits of the Fourier

integration or summation.

9
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For data sets, f(x), sampled only at the picture elements (pixels)

labeled x, discrete Fourier transforms over the set of pixels x - {xl,

X2 00 •XN)
XZN

F(s) - [ f(x) e-  (13)
xl

may be computed. A direct calculation of this sum for each Fourier frequency

s can be time-consuming on even a large comoputer. However, this calculation

is made simple by use of the Fast Fourier Transform algorithm (FFT) which

reduces the computations required for n points so that the overall speed is

proportional to N log2 N, rather than N2 as might be expected from the fact

that there are as many Fourier frequencies s as data pixels x. Programs are

especially fast for arrays with an even power of 2 elements.

C. SAMPLING THEOREM

It is important to consider how best to sample a continuous function.

This question is addressed in the "Sampling Theorem" below, and it has special

importance for processing data. Physical data generally varies in a well-

behaved manner (e.g., 1ounded and continuous). We therefore expect that we

could sample the data at some evenly spaced interval and not lose any infor-

mation. The sampling theorem provides the requirements for this and states:

IF A FUNCTION IS "BAND'LIMITED' (HAS A NON-ZERO FOURIER TRANSFORM FOR

FREQUENCIES 5 < sc AND A ZERO TRANSFORM FOR s > ac, WHERE sc IS REFERRED

TO AS THE 'CRITICAL' FREQUENCY OR NYQUIST FREQUENCY), THEN THE FUNCTION

IS FULLY SPECIFIED BY VALUES SPACED AT EQUAL INTERVALS NOT EXCEEDING

1/2 sc- SAVE FOR ANY HARMONIC TERM WITH ZEROS AT THE SAMPLING POINTS.

An example of such a function is the Airy disc of a diffraction-limited

telescope aperture. In this case, the critical frequency is the classic

Dawe's criterion limit in Eq. (1). Thus, if we have a diffraction-limited

image, we should sample the image at twice the diffraction limit.

~11
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D. NOISE AND FILTERING

Many astronomical noise sources have well defined transforms which may be

partially separated and removed from the desired "data" transform. Equation

* (10) may be used to recover and restore results degraded by a smearing func-

tion by a simple inversion. If one observes a function o(x) and knows the

instrumental response function g(x), then the transform of the true function

f(x) is the Fourier deconvolution.

F(s) O o(s) • G(s)- I  (14)

Noise is always present in real data. The observed function o(x) contains

both a real signal s(x) and a noise component n(x). For simplicity, the noise

is assumed to be additive, random, and uncorrelated with the signal as shown

in Figure 3a.

o(x) - s(x) + n(x) (15)

If one naively restores o(x) using Eq. (14), the high frequency noise is

strongly enhanced and will totally dominate the results. For critically sam-

* pled data, the highest frequency components typically contain at least as much

noise as signal. Typical restoring functions (instrumental response correc-

tions) enhance high frequencies proportionately more than low frequencies.

The restored function thus has noise enhanced as much or more than signal. It

* is therefore desirable to find a restoring function which would correct the

data to as close as possible to the true function, and at the same time,

suppress rather than enhance high-frequency noise components. An optimum

restoring function is the Wiener filter (cf Wiener, 1949). Brault and White

(1971) provide an excellent summary of methods for Wiener filtering astro-

nomical data.

Following Brault and White (1971), Wiener filtering produces the best

estimate, R(s) shown in Figure 3b, of the true function Fourier Transform

*F(s). The optimum weighting of the frequency components in the deconvolution

12
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b.

NOTE: In "a" we see the "white" or constant power spectrum of
typical noise. In practice, we observe in "b" the addition
of noise signal and a real signal R(s). To account for noise
effects, we model in "c" the total signal P (s) consisting
of both the modeled real signal P'(s) and te estimated noise
signal P'(s). With these models, Brault and White (1971)
show thaP optimum noise removal and restoration for degrading
functions is possible.

Fig. 3. Elimination of Noise in Power Spectra
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R(s) 0(s) 0(s) (16)
GTs)

is the optimum filter O(s). This Wiener filter is derived as described in

Brault and White (1971) and it takes the form

P a (s)sS)
f(s) P a (s) + PN(s ) 17)

where P(s) is the power spectrum of the degraded signal

P (s) IF(s) G(s)l2

- Is(s)12 (18)

and PN(s) is the power spectrum of the noise

PN(S) - IN(s)1 2  (19)

The actual calculation of *(s) as represented in Eq. (17) is difficult since

it involves both the quantity S(s) which we are trying to measure and the

interfering noise N(s). Since f(s) is an optimum filter in the least squares
sense, small deviations from the true filter shape give only second order

error increases. In practice, the complicated signal and noise power spectra

are replaced by the simplified smooth models shown in Figure 3c. The observed

signal, 0(s), is also modeled with a smooth curve, Pd(S). As specified above,

Pd(S) is the sum of the signal model P'(s) and noise model P'(s)
- N

P (s) = P'(9) + PA(s) (20)
d s N

P'(s) and P'(s) replace Ps(s) and PN(s) in Eq. (17). For most astronomical

data the noise is assumed to be "white," with no systematic frequency depen-

dence. For example, white noise is characteristic of random statistical fluc-

tuations in photon flux measurements. For most stellar images, a gaussian is

a good estimate of the stellar image profile characteristics

14
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P, (a) C 2 (21)

P, (8) -C 3  (22)

where the constants C1 ~CadC are chosen to best represent the observed
results.
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III. OPTICAL SYSTEMS, IMAGE DEGRADATION, AND SPECKLE INTERFEROMETRY

A. THE MODULATION TRANSFER FUNCTION

To determine the character of an image formed by an optical telescope, we

begin with a discussion of an electromagnetic antenna following Bracewell

(1965). Although the discussion is one-dimensional, it can easily be general-

ized to two dimensions. We proceed from Figure 4 with light propagating from

letf to right. At each point in the aperture plane, the instantaneous elec-

tric field in the propagating light wave is given by F(s) cos [wt - 4(s)1

where w is the angular frequency of the monochromatic light. The propagating

wave is thus generalized in time by a complex "phasor," E(s), with an

amplitude F(s) and a phase *(s)

E)- F(s) e- i() (23)

To deduce the configuration of the light at a distant "image" plane, Huyghens'

principle is applied. That is, the complex phasor at a distant point will be

the sum of the effects gotten by propagating the phasor from each element in

the aperture plane. At some point P in the image plane at a distance R from

the origin (s - 0, z - 0) consider the effects of a small element in the aper-

ture plane, ds, at a distance r from P. The infinitesimal element ds produces

an effect at P proportional to the amplitude F(s) at ds, but with the phase

. retarded by the number of cycles contained in the path r from ds to P. Thus,

the element between s and s + ds produces at P

AM(P - F(s) e-i*(s) ds 1-2r/X~

+ -i2wr/(- (s)ds e (24)

where X is the monochromatic wavelength. To simplify thte problem, we specify
r in terms the distance of P from the origin R. If R makes an angle 0 with

the z axis, then for small angles:

17
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Fig. 4. Diagram of Light Formation from a Small Element da of an Aperture
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i r=R+d

R + i sin S (25)

We specify the coordinate in the image plane in angular units, again with the

small angle approximation

XE 8

sin 8 (26)

Equation (24) now becomes, substituting x for sin 8 in Eq. (25)

+ + -12wsx/XdE(P) E(s) e do

To determine the effects of all points in the aperture, we integrate over

do:

.(x) di(p) ds

+ -12w R/A -i2waxs
= E(s) e e -  x/A do (27)

The factor e-2R/ expresses the average phase retardation from all aperture

elements and is a complex proportionality constant C which we will not

consider further.

O(x) = C E E(s) ei2W2 sx ds (28)

From the definition in Eq. (6), we see that the "image" at a plane distant

from the aperture is related to the aperture distribution through the Fourier

transform. For an optical system such as a telescope, with light propagating

on axis from a distant source, the focal plane is the angular transform of the

aperture plane as described above. In this instance, t(x) is known as the

Optical Transfer Function, or OTF. Therefore, to determine the angular light

wave properties in a telescope image plane, one computes the Fourier Transform

of the aperture function E(s).

19
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As an example of an image formation calculation for a simple aperture

function, we consider a rectangular aperture with constant phase and amplitude

* across the aperture as displayed in Figure 5a. This "rectangle" function, of

" unit height and width, is denoted in standard optical terminology as the "11"

symbol. Normalizing the units to wavelength, we have

sin wx

w - w sinc( ) (29)

"- with the width of the aperture, w, in unit. of wavelength. This sinc function

result is the familiar function displayed in Figure 5b.

The measureable qatylight intensity, is the squared modulus of the

i. OTF. Light from a distant point source will arrive at the telescope aperture

*" in a form very similar to the model described above, with constant phase and

r. amplitude across the aperture. The resulting point source image intensity
function, ti-s squared modulus of the OTF, is konas tePitSpreadFuc

sinw th oitxuc

'. tion, or PS? (Figure 5c).

1(x) - Io(x)l2 (30)

* To determine what the observed image, J(x), would look like as compared

to the "real" image, k(x), one simply convolves k(x) with PSF

j(x) - k(x) * 1(x) (31)

The PS {I(x)} generally includes the degrading effects of the detector as

well as the optical imaging system. Since convolutions become multiplications

under the Fourier Transform, Eq. (31) is usually replaced with its transform

for ease in analysis

20



i.i
;. a. EE/lff l E(8/A)

b. O(x)-w.ein (wx) P(x)

C. I(x)-o (X)12  I(x)

NOTE: In "a," light is allowed to pass only in the rectangular

aperture W. In "b," we see the Fourier Transfer, or Optical

Transfer Function (OTF) for the rectangular aperture, in this

case a sinile sinc function. The image intensity is given

by the OTF in "c" and is known as the Point Spread Function.

Fig. 5. Light Formation in an Optical Aperture
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7(s) K(s) * i(s) (32)

i(s) is the Modulation Transfer Function or MTF. Often the MTF modulus or

squared modulus (MTF)2 is displayed to confine the results to real numbers

MTF- i(s)

= I(x) e-i 2w x s dx

2 -i2wrxs= Io(x)l e dx

Recalling the definition of O(s) given in Eq. (28) and that the auto-

correlation function is the Fourier Transform of the power spectrum [Eq.

(12)], it follows that the MTF is the auto correlation of the aperture

function i(s)

F (s') * E(s' - s)ds" (33)

B. THE EFFECTS OF THE AThOSPHERE

For light transmitted through the atmosphere, the aperture function has

two components

E(s) (a) • (s) (34)
0

where in one dimension, 0o(a) is the standard rectangular (or in two

dimensions, circular) pupil function f(s). X(s) contains the contribution for

propagation through the atmosphere and is in general complex and variable in

both amplitude and phase. The amplitude variations are due to transmission

variability of the atmosphere and the phase fluctuations caused by index of

refraction variations. The refractive index variations are attributed to

sl11-scale density Inhomogeneities within the atmosphere. There are a

variety of models for A(s), but a generally applicable one is the "log normal"

model where the logarithms of the amplitude and phase variations are each

/
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assumed to have gaussian distributions. The linear scale of the fluctuations

obey a characteristic (Kolomogorov) spectrum with a mean scale of ro, where ro

is typically of order 10 cm. Korff (1973) and Korff et al. (1972) have

carried out the integration in Eq. (34) using log normal atmospheric models

and have shown that in short-exposure photos where A(s) is instantaneously

"frozen," the average MTF2 of many such photos (denoted by brackets) has two

components

<MTF 2> _ I<MTF>1 2 + K - MTFDIF (35)

where the first term on the right is the MTF averaged over long time periods

and thus is the conventional long-exposure, degraded MTF with no signal at

frequencies higher than the 1 arc-second atmospheric cutoff. The second term,

however, is the undegraded diffraction-limited MTF appropriate to the full

telescope aperture, but reduced by a factor K. K is typically of order ro/D,

where D is the telescope diameter. In Figure 6, we show the calculated MTF

for long and short exposures as well as the diffraction-limited case. As

stated previously, a conventional long-exposure photo has a l(TF with no signal

at high frequencies. However, short-exposure data does indeed contain

frequency information out to the diffraction limit, albeit considerably

reduced from the information in a photo obtained with no atmospheric effects;

for example, from a space telescope.

C. SPECKLE INTERFEROMETRY

We will now review the detailed appearance of short-exposure astronomical

* photographs. Korff and his collaborators have carried through the calcula-

tions outlined above. His results show that short-exposure photos exhibit a

two-dimensional interference or "fringe" pattern with the mean image scale of

the fringes comparable to the telescope diffraction limit. These fringes are
4the "speckles" apparent in Figure 1. The same result can be derived using a

considerably simpler model for the aperture function i(s) than the log normal

model. The short exposure process may be modeled as the multiple aperture

interferometer shown in Figure 7. For undegraded images (Figure 7a), the
aperture function is the constant rectangle function in Figure 5 and the

L2
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out to the theoretical undegraded limit, while the long-
exposure data do not.

Fig. 6. Calculated Modulation Transfer Functions for Three Cases
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z.sultaaL bc.._. 5 s the well-known sinc2 function discussed in Section

ILIA. In two dimensions, this process produces the classic Airy disk. But

the real case in 7b, computed by Korff, is somewhat similar to the multiple

aperture interferometer in Figure 7c if we restrict ourselves to only one

phase. For random atmospheric fluctuations, the individual apertures of size

b = ro are more or less evenly distributed across an aperture of diameter - a,

with spacing between sub-apertures - c, the aperture function can be written

E(s) = R() - III(s) * R( ) (36)

In this conceptual oversimplification, the first term is a rectangle function

appropriate to the full aperture. The second and third terms represent a

Dirac comb denoted in optical parlance by the "shah" symbol, III (2.) (repre-

senting a set of impulses) distributing by convolution the small apertures of

size b, [( )], across the whole aperture at spacing c. Since convolutions

become multiplications under a transform and rectangle functions sinc

functions, it follows from Eq. (29) that the image intensity is:

I(x) MIo(x)l2

= sinc 2(ax) * 2 (cx) * sinc 2(bx) * constant (37)

The first term is the full undegraded telescope diffraction spot, distributed

by a new Dirac comb impuse set III(cx). The third term is a diffraction spot

appropriate to a much smaller aperture of size b = ro . This broad spot modu-

lates and clips our array of narrow, high resolution spots. For ro W 10 cm,

this latter function is about 1 arc-second wide, or more simply, the

diffraction-limited spot of a 10 cm telescope! The model assertion that

short-exposure speckle images consist of a set of displaced diffraction

limited images modulated by a 1 arc-second seeing disk, is supported by the

photos shown in Figure 1. The individual "speckles" in la are double for a

binary and those for the resolved star in lc larger than the point source in

lb. In work discussed later, Lynds et al. (1976) showed that the individual
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speckle profiles for a point source do indeed closely resemble telescope

diffraction-limited Airy disks.

D. ISOPLANICITY

Atmospheric image degradation has one further complication which we will

now discuss. This is the isoplanatic limitation shown diagramatically in

Figure 8. Light from one point source outside the amtosphere does not travel

through the same column of turbulent atmosphere as light from another nearby

point source. Depending on the angular distance between the two sources and

the height within the atmosphere where the incoming plane waves are broken up,

the instantaneous degradation may not be identical. The maximum angle where

the perturbations are correlated is known as the isoplanatic angle. No rigor-

ous definition of this angle is generally accepted. For our purposes, we have

defined it as the angle where the cross-correlation between the individual

speckle patterns of the components of a binary star system fall to l/e of

their maximum possible (auto-correlation) value. Using this definition,

Hubbard et al. (1979) have measured the isoplanatic angle to lie between 4 and

7 arc-seconds depending on physical conditions and star position on the sky.

There is some evidence (Hardy 1979) that the isoplanatic angle may be as small

as one arc-second for daytime seeing conditions. Despite the many uncertain-

ties, the effective isoplanatic angle is probably never greater than 10 arc-

seconds, although there are some assertions in the literature to the contrary

(Weigelt, 1979) but these are not substantiated by a quantitative criterion

such as the one we have proposed.

E. INSTRUMENTATION FOR SPECKLE INTERFEROMETRY

In this section we will review the basic features of speckle data acqui-

sition systems. In Figure 9, we show a diagram of Lynds et al. photographic

system. Starting from the left, the device consists of:

1. A fast shutter to insure exposures shorter than the atmospheric
change time, typically 20 ms.

2. A set of rotating prisms (Risley prisms) are set to counteract
atmospheric dispersion. Since the desired results are diffraction
limited, we must consider errors on scales of a few thousandths of
an arc-seciond. The atmosphere acts like a prism for objects away
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by Lynds et al. (1976)
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from the zenith. At the small angular scales we are dealing with,
this effect can substantially smear the speckle pattern for even
very narrow bandpasses of a few hundred Angstroms.

3. A microscope objective or similar optics expands the image scale so
that typical detectors, film in this case, critically oversample
(sampling theorem) the telescope diffraction-limited spot. For the
4-meter telescope the final image scale is 0.2"/mm, in which case
the telescope diffraction spot of ".03 represent 150 p, an easily
sampled size for film or digital detectors.

4. An interference filter defines the spectral bandpass. Since there
may be up to 30 orders of interference across a large telescope
speckle pattern, the bandpass must be less than about X/30 or
150 A. Naturally, larger telescopes produce speckle patterns with
more orders of interference, thus requiring narrower bandpasses.

5. To provide enough signal so that individual photon arrivals may be
rapidly detected on film (or other detectors) image intensification
is used. For most systems, a three-stage, magnetically focused
image tube appropriately coupled to the detector is ideal.

6. For simple systems, as shown here, the speckle frames are recorded
photographically using a commercial 35 mm, single lens reflex camera
with motorized film transport. The low efficiency and frame rates
plus the cumbersome data reduction for film systems have limited
photographic systems to objects brighter than magnitude +7. It is
the final detection and recording area where substantial gains may
be achieved with modern digital detectors.

The photographic system outlined can in principle detect individual

photons if the image intensification is large, but this presents substantial

difficulties. The usual photographic features such as film grain and

* development artifacts can easily be misidentified as photons. Image tube

noise such as ion events present a similar problem. Faint objects produce

* only a small bandpass speckle photo, so the large two-dimensional data

recording ability of film is wasted. Of most concern is the requirement for

up to 106 speckle frames digitally processed for satisfactory results on faint

object data. If current photographic digitization schemes are used, about 5

minutes is required to digitize one frame! Afterglow in the image tube

requires that the shutter be cycled only once per second so that the tube

returns to a dark condition between exposures. This process wastes most of

the photons since only one 20-ms exposure is obtained per second. To obtain

30
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106 exposures with such a system would require weeks, and to process them

would require years. Steward Observatory has developed a digital system to

eliminate these problems (Hege et al., 1980). The instrument is similar to

that developed at the University College, London (cf Boksenberg, 1978).

In the University of Arizona instrument, the output of the image tube is

recorded continuously on video tape without shuttering the speckle camera.

All possible data is thus recorded at television rates (60 cycles/sec). A

video analog-to-digital unit constructed by Grinnell Systems converts the

video tape into computer-compatible numbers and inputs each frame into an

associated array processor which identifies, centers, and thresholds the

photons to determine each photon location and discriminate against large ion

events and low level noise. To eliminate false identifications of photons

based on the afterglow of a photon arrival from a previous frame, each frame

is differenced against its immediate predecessor to insure that only new

photon arrivals are identified. The resulting photon coordinates alone may

then be recorded onto digital tape or input into an array processing computer

for Immediate auto-correlation or Fourier transform calculations. The proce-

dure may be run in real time so the whole process is done at the telescope.

We have refined Boksenberg's system by recognizing that 6-9 pixels are neces-

sary to oversample each telescope diffraction spot. The Boksenberg system

only oversamples by the standard Nyquist factor of 2-3 and we have found

empirically that this does not provide sufficiently accurate photon coordinates

to reach the full telescope diffraction limit. These procedures are described

in Strittmatter (1980).

Other systems exist for identifying and recording individual photons. An

especially novel system has been developed by L. Hertz at Lockheed which se-

quentially identifies photon arrivals, rather than recording all events within

a given exposure. Hertz (1979) has developed a method for completely recon-

structing images which requires knowledge of when a photon arrives vis-a-vis

other photons rather than just where it arrives.
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F. DATA REDUCTION

Labeyrie's method for processing speckle photons stems directly from the

standard image reconstruction deconvolution equation

K(s) - i(s) (38).

where K(s), J(s), i(s) are respectively the noise-corrected Fourier transforms

of the desired image k(x), the observed image J(x), and the point spread

function I(x). To reiterate, this equation does not work to recover full

diffraction-limited images from conventional long-exposure photos. The Modu-

lation Transfer Function i(s), usually obtained from observations of point

source stars, contains no high-frequency information in a long-exposure

regime. The deconvolution in Eq. (25) shows that short-exposure data does

contain a finite MTF out to the telescope diffraction limit. This desired

signal is, however, only extractable in a statistical sense. In Eq. (25),

Labeyrie's contribution was to note that the mean squared modulus from many

speckle frames contains a finite and presumably constant diffraction-limited

term. We can thus use the deconvolution in Eq. (27) to obtain the

diffraction-limited power spectrum (squared modulus) of an object outside the

atmosphere

IK(s)1 2 = <JJ(s)12 >  (39)

where the top term is the average power spectrum of a set of target object

speckle patterns and the bottom term the same function for a set of point

source (star) speckle photos, both properly corrected for noise bias. To in-

sure the assumption that average transfer properties of the point source and

program object are identical, point source observations are generally made as

closely as possible in time and location in the sky as those of the program

object.

The power spectrum computations are done either optically or digitally.

In the optical mode, a coherent light source (laser) is shone through the

speckle film as shown in Figure 10. The light is then brought to a focus.
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Fig. 10. Laser Reduction of Speckle Photographs
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Following our earlier discussion, the focused product is a power spectrum.

The signal from many speckle phtos may be added to produce results such as

those shown in Figure 11 for close binary stars. This method is well suited

to binary stars since the binary power spectrum has the easily detectable

banding apparent in Figure 11. Binary star angular separation and position

angle are readily obtained from'such data, often without need of point source

comparison data. The binary star auto correlation is sometimes computed from

*the power spectrum since the binary signal is concentrated into two small

points as shown in Figure 12 rather than the diffuse power spectrum bands.

This makes it easier to extract results. The procedures outlined above may be

done on a computer for digitized speckle data, thereby providing more careful

* control of the process. Since new speckle systems provide digital data, the
optical reduction method has fallen into disuse. We remind the reader that

only Fourier amplitudes are extracted with Labeyrie's method; the phase and

complete image recovery are lost.

To derive angular diameters rather than relative separations, we need to

measure the precise point where the diffraction-limited power spectrum cuts

off. This is more difficult than measuring the position of bands in binary

star power spectra. The diameter signal is overlaid on a background of noise

and atmospheric interference. Speckle results are generally calibrated from

the point source observations, which stresses the assumption that the point

source has identical transfer characteristics and no noise bias. Even a small

difference between the point source and target object transfer characteristics

can obscure angular size determinations. To account for this problem, Worden

et al. (1977) derived a method to calibrate directly from the target object

results, without reference to an external point source. The method involves

computing the mean auto-correlation between speckle frames of the same set of

data. The cross-correlations must be between exposures far enough apart in

time, typically I second, so that all diffraction-limited signal is gone, as

it is the cross-correlation which provides the calibration. Moreover, the

program object must be smaller than the atmospheric 1 arc-second cutoff.

Welter and Worden (1979) have shown that this process, represented in Eq.

(41), produces a full diffraction-limited auto-correlation, undegraded by
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NOTE: May De computea tram the Fourier Transform of
4 data shown in Fig. 11

Fig. 12. Auto-correlation of a Binary Star Showing the Two Bright
Maxima at Binary Separation
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atmospheric effects. Hege et al. (1980) have shown that the appropriate

cross-correlation function may be much more readily calculated from a single

long-exposure image accumulated from the same set of exposures.

k(x) * k(x) - Ji(x) * jl(x) - c • Ji(x) * Ji+i(x) (40)

The constant c has been shown by Hege et al. (1980) to be necessary to

normalize the results. It is the constant which makes the cross-correlation

identical to the auto-correlation at sizes much larger than the object but

smaller than the 1 arc-second cutoff. Moreover, each speckle frame must be

carefully centered and normalized before processing, otherwise, the cross-

correlation will have a spread not present in the auto-correlation, giving

systematic errors (Worden and Stein, 1979). This method is ideal for faint

object speckle data since the correlations and long-exposure images are easy

to compute from photon locations. The correlations are simply the vector

distance between photon locations and may be computed in real time at the

telescope.

We make an additional point concerning the handling of noise in speckle

images. For virtually all stellar speckle applications, the raw speckle data

consist entirely of individual photon locations, as described previously. The

auto-correlations of this signal and associated noise provide an additional

source of interference in extracting quantitative results. In an ideal sense,

photon noise should be confined to a single pixel. In practice, however,

detectors are seldom good enough that random noise is confined to a single

pixel. In either case, it is essential to account for this noise "bias" in a

consistent manner. It is generally desirable to oversample the telescope

diffraction-limited scale by as large a factor as possible to separate the

noise bias error from the diffraction-limited signal. However, practical

considerations of detector size limit the degree to which oversampling is

possible. Clearly, in any speckle system the noise bias will have real impact

at the spatial frequencies where diffraction-limited signal is desired.

The Arizona speckle reduction process handles the noise bias in the

following manner. For ease in notation, we consider the power spectra of
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photon sampled speckle frames, with Ni photons in each frame. Following

Eq. (12), the net observed power spectrum POBS(S) is computed from the

transform of the auto-correlation in Eq. (41).

o() - 1/2wflk(x) * k(x) 2  -i ds (41)

The noise bias power spectrum, Ph(s), is obtained by collecting many frames

of faint uniform illumination (no stellar signal) integrations and computing

the average power spectrum of these frames, normalized to a single photon.

*The observed power spectrum is then divided by this bias power spectrum. To

normalize the final result for a quantitative estimate of the true power

* spectrum, PEST(S), the total number of photons observed, N = I Ni, is
4subtracted as a constant from the result. This is the crucially important

noise bias correction

POSs)

PEST( (s) - O -N (42)

We have shown that this formalism provides the best estimate of the actual

object power spectrum, independent of the detailed form of detector response

to photon noise.

38

I



-I

IV. IMAGE RECONSTRUCTION

A. POST-PROCESSING METHODS

The ultimate goal of speckle inteferometry is to provide actual images

completely free from atmospheric degradation. Any image has a Fourier

transform K(s) which in general consists of amplitudes A(s) and phases e#(s) .

K(s) - A(s) e ( )  (43)

As previously described, speckle interferometry provides diffraction-limited

Fourier amplitudes A(s). Most speckle image reconstruction methods center

around efforts to recover the phase e#(s ) , as well. In 1976, Lynds, Worden,

and Harvey accomplished the first complete speckle image reconstruction for

the special case of bright, nearly point source targets where images could be

* extracted directly from the speckle photo. Knox and Thompson (1974) proposed

a method to derive phases in a statistical manner related to Labeyrie's method

for getting the amplitudes. The Knox-Thompson method has been successfully

applied to the sun (Stachnik et al., 1977) but is highly noise sensitive and

to date has only been applied to bright objects like the solar surface.

Recently, Fienup (1978) proposed a method to derive phases by iterative

processing using only the diffraction-limited amplitudes and some reasonable

physical constraints on real physical image properties as inputs. This method

is less sensitive to noise and we believe it is well suited for all image

reconstruction work. It should provide actual images for all objects towards

which speckle interferometry is applicable down to stellar magnitude +16 or

fainter. We also note that active optics systems show considerable promise

for bright object imagery.

Liu and Lohman (1973) and Wang (1974) pointed out that if a point source

lies within the isoplanatic patch of a target object, the speckle pattern of

the point source may be used as the instantaneous PSF. In this case, Eq. (38)

may be used for direct Fourier deconvolution using only a single speckle

frame. Unfortunately, there are precious few objects with a bright point

39



source within their isoplanatic patches. Weigelt (1978) has proposed to use a

number of point sources sharing "partial isoplanicity" (i.e. within 10-20 arc-

seconds) to perform the deconvolution. This methods looks promising, but is

still only applicable for a limited class of targets in bright fields of point

sources.

As described previously, the speckles themselves can be thought of as

images. This follows directly from the simple multiple aperture

interferometric model for speckle interferometry. Repeating the result in Eq.

(38):

I(s) - sinc2(ax) * III(cx) • sinc2(bx) • constant (44)

The resulting image will consist of a set of impulses convolved with a

diffraction-limited image and modulated by a seeing disk. Although actual

speckle photographs are not true multiple aperture interferograms and

individual "speckles" true Airy disks, it is apparent in Figure 1 that the

speckles have a characteristic shape and size similar to an Airy disk as

theoretically suggested by Korff et al. (1972). Since the speckle pattern of

an object consists of the convolution of the actual object with a point source

speckle pattern, individual speckles within such speckle patterns may be

considered as the convolution of point source speckles with the object. Lynds

et al. (1976) made use of this feature to reconstruct images of the resolved

supergiant star Alpha Orionis (Betelguese). For binary stars, faint objects,

or larger resolved objects it becomes difficult to pick out individual

speckles since they overlap. The problem may be alleviated somewhat by

restricting oneself to only the brightest speckles which are more widely

separated within the speckle image. In practice, digital speckle photographs

are computer-processed to locate and co-add bright speckles. Resulting

"images" for Alpha Orionis and an unresolved comparison star are shown in

Figure 13, along with our one-dimensional radial averages of these results.

The similarity of the point source profile to an Airy disk, complete with

secondary maxima, supports the simple multiple aperture model and validity of

the technique. Refinements to this procedure have been proposed by Bates et

al. (1978).

40



Y Orlonis I-.06 -4 a Orionis

from Lynda et al. (1975)

41



4

A general-purpose image reconstruction scheme for arbitrarily shaped ob-

jects has been proposed by Knox and Thompson (1974) and Knox (1975). As pre-

viously discussed, the amplitude of the image Fourier transform can be ob-

tained from Labeyrie's reduction technique. However, a similar averaging

scheme involving the instantaneous phase was shown to fail by Miller et al.

(1973) and McGlamery (1971). If the Fourier transforms of speckle frames are

averaged, the result is identical to a conventional long-exposure photograph.

The reason for this lies in the fact that at high spatial frequenci., the

atmosphere introduces phase shifts large compared to 2w. Since phase is

periodic over 2w, averaging phase with many cycles error results in zero

values for both phase and amplitude. However, Knox and Thompson (1974)

pointed out that the phase difference between nearby frequency points in

-speckle transforms undergoes atmospherically induced errors which are small

compared to 2w. The true value of phase difference between nearby frequencies

may thus be obtained by averaging the instantaneous phase difference from each

in a set of speckle photos. As with Labeyrie's method for obtaining ampli-

tudes, phase differences systematically introduced by the telescope and detec-

tor are obtained from sets of calibration point source speckle data. To get

the actual phase of each frequency element, this array of phase differences is

processed via a simple algorithm. The DC or zero frequency element always has

zero phase. The calculated phase differences may then be used to offset from

zero to the actual phases for adjacent frequenLy elements. The process is

then continued to higher frequencies using the already calculated lower fre-

quency phases as new baselines. It is easy to see that small errors will

propagate and worsen as one works out to higher frequency elements. Even

though this error can be lessened somewhat by using multiple routes in fre-

quency space for each frequency element (Stachnik et al., 1977) or by phase

unwrapping techniques (Cocke, 1980), it is clear that the method is highly

-4 noise sensitive. Phase unwrapping techniques entail adding an additional

requirement to speckle data reduction; that phases from one frequency element

to adjacent frequencies vary in a smooth and continuous manner. Processing

data with this additional constraint has yet to be fully investigated, but

preliminary results (Cocke, 1980) suggest an improved performance in the pre-

sense of noise in the input data.
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Stachnick et al. (1977) demonstrated the Knox-Thompson method for solar

image@ producing the results in Figure 14. The sun is an ideal target for

this method since low noise data is readily available, and the sensitivity of

- this method is minimized. Recently, the Harvard group (Nisensen, Stachnik,

and Noyes, 1980) have succeeded in reconstructing a large area of the solar

surface using the Knox-Thompson method. This approach thus shows great

promise for solar physics work.

Until recently, the ability to reconstruct images of faint objects ap-

peared to be beyond reach. The novel approach to this problem recently pro-

posed by Fienup (1978) proceeds from work by Gerchberg and Saxton (1972) which

showed that the Fourier phases could be derived in some cases solely from

Fourier amplitude information. Fienup's method uses an iterative process

operating in image space (i.e., not in transform space as the Knox-Thompson

*method) but using the Fourier amplitudes, which are readily extractable from

conventional speckle methods, as inputs. We have successfully applied this

method to a variety of objects, including the binary star shown in Figure 15,

and we believe it completes the speckle method and accomplishes the ultimate

goal of completely removing atmospheric degradation of Images.

Fienup's algorithm is elegantly simple and proceeds as follows:

1. We know the "real" Fourier transform amplitude from speckle
interferometry reduced in a manner described earlier.

2. We pues at an image. If no other Information is available, an array
of random numbers is a good start. If the object size is known,
perhaps from the amplitudes in 1, the array of random numbers mey be
constrained to fit this size. Some residual phase information in
the long-exposure image may also provide useful additional
constraints.

3. Compute the Fourier transform of the image guess.

4. Force the computed transform amplitude of the guess to equal the

known amplitude from 1. Do not touch the phases.

5. Invert the adjusted transform to recover an image.

6. Force the image in Step 5 to obey known image constraints, such as
that there are no negative numbers, or that outside a certain size
known from 1, all values are zero. This corrected image serves as
the input for the next iteration.
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*NOTE: Data from Stachnik et al. (1977)

arc sec
Fig. 14. Solar image with Portion Reconstructed Using the Knox-Thompson

Algorithm
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NOTE: Alpha Auriga - 0.050 arc-second separation
Alpha Orionis - 0.06 arc-second angular diameter

* Fig. 15. Successful Reconstruction of a Binary Star (Alpha Auriga) and a
Resolved Supergiant (Alpha Orionis) Using Phase Unwrapping Technique
and Fienup Algorithm
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7. Iterate Steps 3-6 until a goodness-of-fit criterion is met such as
the following given by Fienup:

2 ff(ji(s)}2 ds
2 (45)0 ff q (s)2 ds

where Ji(s) is the ith image guess and the integral at the top is integrated

over all locations Y where the constraints in 6 are not met. E will always

decrease as explained by Fienup. Usually good images have Eo  10- 2 .

Since its publication, the uniqueness of solutions given by Fienup's

(1978) method has been debated. Bruck and Sodin (1979) showed that the Fienup

process does not give a unique result for one-dimensional functions. They

also shoved that for a two-dimensional image with an intensity function i

(x,y), the Fienup result is unique (plus or minus 180) unless i (x,y) is a

*: factorable polynomial. If i (x,y) can be.written as the product of two

functions g (x,y) and h (xy)

i(x,y) - g(x,y) * h(x,y) (46)

where g (x,y) is a polynomial and h (x,y) is analytic everywhere without

singularities except at infinity, then i (x,y) is factorable and the Fienup

result is not unique. As discussed by Huiser and van Toorn (1980), this is a

highly restrictive requirement for two-dimensional functions. They show a

number of real two-dimensional functions which can be factored and have iden-

tical power spectra, but with greatly different forms. However, these func-

tions are highly symmetric and do not resemble real space objects which are in

general not factorable. On the other hand, Huiser and van Toorn (1980)

pointed out that noise in the input data may make the polynomial factoring

requirement considerably less restrictive, and thus Fienup reconstructions

more ambiguous. Against this potential difficulty must be balanced successful

evidence of the Fienup method such as shown in Figure 15 and more recent re-

sults such as given in Fienup's (1980) *aper using our data. Both of these

results were based on input data with substantial noise. Pending further

study and simulations, the uniqueness of Fienup algorithm results must be

regarded as an open issue.

46



We believe that an optimum procedure will combine phase retrieval methods

such as Knox-Thompson, Cocks, or Dates to produce initial image estimates

which will constrain the Fienup reconstruction sufficiently to remove image

ambiguities even in the presence of substantial noise.

Our program, which retrieves the speckle phase information by both phase

unwrapping and Knox-Thompson (K-T) methods, also computes the averaged power

spectrum. This program works as follows: A digitized speckle frame is read

from tape by the computer and Fourier transformed (FT). The squared modulus

of this FT (the power spectrum) is added into the power spectrum accumulator

array. Then, the phase angles of the FT are treated by the phase-unwrapping

part of the program, which makes the phase angles as nearly continuous as

possible, as a function of the discrete wave numbers (u,v). These unwrapped

phase angles are added into the appropriate phase accumulator array. Also,

the K-T phase-factor ratios are computed from the same FT and are added into

another accumulator array.

The next speckle frame is read from the tape and processed as above, and

so on until the desired number of frames N has been processed. The accumula-

tor arrays are then divided by N, the result being the averaged power spec-

trum, unwrapped phase angles, and K-T ratios.

The averaged seeing-corrected power spectrum is then processed further to

remove the seeing and detector-telescope transfer functions, and the result is

then filtered and iteratively cleaned to improve its "reality" properties.

The final power spectrum is then combined with the phase factors

(computed either from the averaged phase-unwrapped angles or averaged K-T

ratios), and the result is inverse-Fourier transformed to get a preliminary

image. Such preliminary images usually have negative values in some pixels,

so a Fienup algorithm is used to retouch them.

Currently these phase-retrieval and image reconstruction algorithms have

only been applied to analogue mode data. Efficient, discrete-address phase

accumulation methods have not yet been developed n view of the well-known

sensitivity of phase retrieval methods to single frame signal-to-noise ratio.
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B. WAVEFRONT RECONSTRUCTION METHODS

A highly desirable imaging system is one requiring no post-detection
processing. As first proposed by Babcock (1953,1958), a device is introduced

* into the optical path which detects in real time the atmospherically induced

phase fluctuations. A second device introduces countering phase shifts to

reconstruct an unperturbed wave. Figure 16 represents two approaches to this

problem. The simplest conceptual design uses a device to measure image

sharpness, possibly by maximizing high spatial frequency components. A

feedback loop is coupled back to phase shifting optics, usually a mirror with

a deformable surface, the "rubber mirror." Such mirrors are manufactured by

ITEK Corporatioft and consist of a thin optical flat mated to a piezo-electric

matrix which can be deformed point by point with an applied voltage.

Different portions of the rubber mirror are moved to achieve maximum image

sharpness. A more general scheme involves determining the point-by-point

phase errors in the aperture plane. This information is then fed directly to

the counteracting deformable optics. The phase error determination may be

accomplished in several ways (Wyant 1975). A very successful method used by

the ITEK Corporation is to introduce a shear in the incoming wavefront. The

resulting interference pattern intensity profile may be read and interpreted

to yield the phase errors to be corrected (Hardy et al., 1974). This method

is qualitatively similar to methods used to determine phase differences in the

K-T process. Active optical systems suffer from two limitations. First,

atmospheric phase errors must be detected and corrected before they change.

More importantly, the phase compensation is valid only over a portion of the

isoplanatic patch where the phase errors are highly constant, perhaps less

than 2 arc-seconds. These problems limit this method to relatively bright

objects. To accomplish a large area reconstruction, as for the solar surface,

requires each isoplanatic patch be reconstructed independently. One approach

to the latter problem is to use multiple reconstruction loops for each iso-

planatic patch, however this could become prohibitively expensive. An alter-

nate approach to this problem is to reconstruct one isoplanatic area at a

time, place the reconstructed area into an array processor and step the active

optic device to repeat the process. Fast array processors and computers are
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readily available to perform the image integration and processing. These

limitations and requirements make active optics most applicable for solar

* image work.

To test and demonstrate active optics on solar images, AFGL performed a

test of the ITEK active optics system (Hardy et al., 1976). The ITEK device

uses a shearing interferometer with array detectors to measure the atmospher-

ically induced phase errors. A deformable mirror consisting of a thin optical

surface mated to piezo-electric material supplies the movement to compensate

for the phase errors. The ITEK test device has 21 independent phase correct-

ing elements. As seen in Figure 17, the system worked well on stellar point

sources, recovering a fully compensated diffraction-limited star image. The

*extended solar image presented a more difficult problem and the test was

4 unsuccessful for the sun. The failure was attributed to a dramatic decrease

in isoplanatic patch size during daytime seeing conditions. ITEK had modified

its unit to cope with the smaller isoplanatic size, and a new series of tests

* produced somewhat better results. We note that each detector/corrector loop

compensates for only one phase-constant area of the telescope aperture. With

only 21 individual loops and an apparent daytime phase coherence length (ro)

of about 3 cm, only about 20 cm of telescope aperture was usable. To compen-

sate the full 72 cm aperture of the Sacramento Peak Tower Telescope requires

several hundred detector/corrector loops. Using a preliminary ITEK estimate

of $5000 per loop, a full system costs nearly $1 million, not including the

array processor hardware for large area reconstruction which we estimate to

cost an additional $300,000. Clearly such systems are costly compared to

speckle methods. However, the active optics approach with a real-time

correction and the ability to make available a corrected image for further

analysis, in a spectrograph for example, has immense appeal for solar

* physics. Its potential is so great for solar physics that the active op,6 ics

cost is well-justified and is being actively pursued by AFGL.

As pointed out, active optics systems can provide diffraction-limited

images only for bright targets. Limiting brightness is set by the system's

ability to detect and correct the atmospheric phase error before the error can

4 change significantly. Using a simple form of active optics system, we can
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NOTE: A 50-cm aperture on the Sacramento Peak Power telescope was
used. The uncompensated ixmage is shown in "a"; an improve-
ment to about 0.2 arc-second expected in a diffraction-limited
case is nearly reached in "b."

Fig. 17 Results of ITEK Rubber Mirror Test on Poit Source Stars
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estimate what the limits might be. We propose using the "Hartman" test method

for detecting atmospheric phase errors (cf Wyant, 1975). This method, illus-

trated in Figure 18, treats each small ro phase coherent patch of the telescope

aperture separately. We will assume for this discussion that ro M 10 cm.

Each ro patch is imaged separately with a small 10 cm "lens." Since the ro

patch is phase coherent, each independent patch differs from its neighbors

only by a DC phase offset or "piston" term and a phase error slope or "tilt"

across the patch. Consequently, the images from each 10 cm lens will be iden-

tical except for a positional offset relative to the centerline of the 10 cm

lens system. This offset is directly translatable into the tilt and piston

offset for the 10 cm patch. Thus, to measure and correct the phase error, one

needs only to use a simple quadrant detector in the 10 cm lens image in a

closed loop with an active optics element. The limiting requirement is

clearly to record enough photons in a 10 cm patch during the integration

period before the atmosphere changes so that the image displacement can be

accurately defined and corrected.

To correct for a phase error, we assume that it would be necessary to

measure that error to within *i/6 radians (300). This translates to locating

the center of each Hartman lens image to better than 8 percent of its

diameter. If we detect n photons per image, then simple gaussian statistics

imply that the center of the image may be located to *l/fin of the image

diameter. Thus, about 150 photons are required to obtain the desired 8 per-

cent diameter accuracy. System quantum efficiency for a good speckle system

is about 10 percent per 100 A bandpass (Hege et al., 1980). Thus, for a

broadband active optics system with a 10 ms integration and cycle time, we

would need photon arrival rates at the telescope of -103/cm2/sec to achieve

w/6 radian accuracy per Hartman loop (ro -10 cm) element, or about an llth

magnitude star. Reminding the reader that the comparison star must be within

one isoplantic patch, which we assume to be 3 arc-seconds, and finding that

there are ~ten l1th magnitude stars per square degree, we conclude that about

10- 5 of the sky would be observable with the active optics systems likely to

be avail hle.
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NOTE: The atmospherically perturbed wave front enters the telescope
aperture and the wave is split into two components, the
majority of the light progressing toward the main telescope
optics, the remainder entering the Hartman optics. Individual
focusing elements, r in diameter, bring phase coherent
subelements to independent foci. The displacement of each
of these images from nominal centerline is detected by quadrant
detectors and translated into phase error signals. These
signals are sent to phase correcting optics which reconstruct
an unperturbed wave front. The light is then brou-'ht to a
focus by the main telescope optics to produce an image free
from atmospherically induced degradation.

Fig. 18. Operation of Hartman Active Optics System
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To expand the applicability of active optics systems, we suggest a com-

promise approach (Woolf 1981). If we use a phase detection arc correcting

loop which averages over several individual ro phase coherent patches, several

advantages accrue: A fainter comparison star can be used, a larger isoplana-

tic patch is likely, and the atmospheric change time is longer. Against these

advantages must be balanced the greatly decreased improvement in image

quality. There is, therefore, a compromise instrument where nearly the entire

sky might be observed with a suitable active optics comparison star available,

and where a usable increase in resolution results. Such an instrument may

then be coupled to some form of speckle-based image reconstruction to provide

the most efficient image reconstruction system. An improvement in image

quality brought about by a partial active optics system enhances further

speckle processing since the same number of photons are concentrated into

fewer "speckles," or more precisely, interference fringes.

N. Woolf (1981) has studied the optimum hybrid active optics/speckle

configuration and determined isoplanatic angle size for a given active optics

single element size (ro) assuming all turbulence is at one level in the

atmosphere (-3 km height) and a standard atmospheric turbulence model. The

same model and calculation coupled with an estimate of wind speed at that

altitude provides an estimate of the atmospheric change time. Woolf (1981)

concludes that an optimum system would have individual elements of 1.5 to

2.0 meters in diameter. A usable guide star (18-19th magnitude) would then be

available within 2-3 arc-minutes of most objects in the skey. For a 1.5 to

2.0 meter element the isoplanatic angle (or more correctly for the larger

element, the "aplanatic" angle) becomes 2-3 arc-minutes. Atmospheric change

time increases to 0.2 sec making an 18th magnitude star a suitable comparison

source for existing active optics systems. The net active optics image

improvement is estimated to be 25 percent over an uncorrected system. This is

about a factor of two improvement in number of photons per speckle, indicating

the good potential utility of a hybrid system. Since this size is similar to

the individual mirror size (1.8 m) for the Arizona/Smithsonian Multiple Mirror

Telescope, that instrument is ideal as a test for these ideas.
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V. SUMMARY

The atmosphere degrades images of objects observed through it. The basis

of this degradation is the introduction of phase shifts in an incoming light-

wave by passage through atmospheric regions with variable index of refraction

due to small scale density in homogenities largely due to temperature varia-

tions. The phase errors, coherent over less than 10 cm, change in less than

0.05 second and effectively reduce all telescope resolutions to the 1 arc-

second value appropriate to a 10 cm instrunent. In 1970, Labeyrie pointed out

that short exposure "speckle" photos freeze this turbulence and convert large

telescopes to a form of multiple aperture interferometer. Using sophisticated

Fourier descriptions of this optical process, various workers have shown

during the 1970s that speckle photos contain extractable high frequency angu-

lar scales down to the diffraction limit of the largest existing telescopes.

Numerous investigators have used this result to derive the size and shape of

astronomical objects as small as 0.02 arc-second by computing the instantane-

ous power spectrum of the speckle photos. With new calibration methods and

high efficiency digital recording systems capable of recording the arrival of

most incoming photons, sizes of objects fainter than +15 magnitudes may be

obtained with 5% accuracy. The major task facing us now is to reconstruct

images free from atmospheric degradations rather than just get sizes and

shapes. In 1975, Lynds et al. showed that images of bright stars were

directly obtainable from speckle photos. For more general image reconstruc-

tion, the power spectrum used to determine angular sizes must be supplemented

with Fourier phases. Sophisticated statistical techniques to get the phase

from speckle photos directly have been developed by Knox and Thompson (1974)

but are highly noise sensitive and limited to bright objects like the sun.

Recently, a promising method developed by Fienup (1978) was successfully

applied to derive phases for faint astronomical targets. The technique relies

on an iterative processing using the true power spectrum derived as described

above as an input. The method is insensitive to noise and shows that actual

diffraction-limited images can be reconstructed for objects fainter than +15

magnitudes. Our recent work shows that a combination of phase retrieval and
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image reconsruction methods should produce optimal images. Active optics

("rubber mirror") systems exist which compensate for atmospheric degradation

in real time. A unit built by the ITEK Corporation was tested on astronomical

targets. Despite its high cost and limitation to bright objects, such devices

are ideal for solar work as they provide real-time corrected images for input

into other conventional analyzing instruments; however, they appear to be

totally inappropriate for faint object systems. We suggest that in optimal

system for large-aperture, faint-object diffraction-limited image recovery

will utilize all available technologies.
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